

RFIC2017

RFIC/Silicon-Based Phased Arrays and Transceivers for 5G

Gabriel M. Rebeiz
Distinguished Professor
Member of the National Academy

University of California, San Diego rebeiz@ece.ucsd.edu

June 4, 2017

Outline of the Talk

- Phased-arrays and their architecture
- How silicon was introduced
- Technologies needed to make it happen
- 5G: How to increase data rates by 10x
- How to build 5G phased-arrays
- Some 5G examples at 28 GHz and 60 GHz
- Lowering the cost and other important things
- Conclusion

Phased-Array Basics

- Phase shifters at every element and sum the output (in RF or IF or DSP).
- Result in beamforming and electronic scanning
- Spatial power combining: (Array directivity ~ N)
- Higher Rx SNR: ~ N (dB)
 (Uncorrelated noise from receivers)
- Effective isotropic radiated power (EIRP=PtGt): ~
 N² (directivity ~ N, power radiated ~ N).
- Total system improvement: N^3
- All of this is compared to a single element (which is not correct)
- For the <u>same</u> aperture size, the only advantage over a reflector (fixed beam) is electronic steering
- And lots of disadvantages (gain drop vs. scan angle, antenna impedance change, etc.)

We Know How to Build Phased-Arrays

Phased-Array Architecture

- RF beamforming allows for a sharp filter before the mixer
- Remember: S/N ratio at antenna is << 0 dB!!
- No interferers mixing at the element level
- No SSB filtering at the element level (for IF systems)
- No LO leakage (Direct conversion or IF)
- Most used topology (SATCOM, Radars, even 5G)
- Hybrid architecture (RF/Digital Beamforming) in 5G

Gabriel M. Rebeiz, RFIC Symposium Plenary Talk, June 2017

Interferes can kill you (and you do not know where they are!)

- IM3 from interferers occurs at an apparent angle, different than interferer incidence angles
- You cannot null the IM3 (create a zero in the pattern) only filtering and linearity can save you
- This is why RF-Beamforming won it is the most linear and allows for filtering before the mixer

Lowering the Cost: Silicon to the Rescue!

SATCOM

8-Channel Tx or Rx (2x2 dual Polarization)

RADAR or TDD/Comm

Proposed by Rebeiz and Navarro/Boeing 2001

- Use silicon where it makes sense (complexity, control, yield)
- Use GaAs where it makes sense (PA power, Ultra-low-noise)
- SiGe and CMOS are both good candidates

Silicon is Great (but need more technologies)!!

- Immense advances in highly dense, <u>large area</u>, multi-layer PCB boards
- Immense advances in packaging (QFN, BGA, WL-CSP)
- Immense advances in SiGe/CMOS microwave and mm-wave design
- Advances in planar antenna designs/ EM numerical solutions

Put all four technologies together

low-cost phased arrays and transceivers

64-element 17-21 GHz Phased-Array (Rockwell Collins/UCSD - 2010)

And.. Silicon has already changed several systems

Gabriel M. Rebeiz, RFIC Symposium Plenary Talk, June 2017

Raytheon/X-band

60 GHz Tx/Rx 8 to 16-Channel Phased-Array on Laminates

- First major introduction of commercial silicon phased-arrays was at 60 GHz
- Large number of elements + transceiver on a single chip

Let us look at mobile communications today

- All based on sectored base-station antennas to the mobile user (low gain/low gain)
- Low-gain to low-gain antennas (good for coverage/bad for data rate)
- How can we improve it?

DIRECTIVE COMM. (Spatial diversity)

Better communication systems: 5G

Improving communication systems is a challenging problem:

1) More Bandwidth: Millimeter-waves (28 GHz, 39 GHz, 60 GHz, etc.)

2) <u>Better Coding:</u> We are (nearly) at our best

3) <u>Lower Noise Figure:</u> We are at (near) theoretical limits

4) PA power and efficiency: Again, near theoretical limits

5) Spatial Diversity:

Phased Arrays/MIMO/Multiple Beams

Which level of integration on the Silicon RFIC??

- Quad: Uniform heat over phased-array, resilient to failures, mix/match technology (SiGe/GaAs, CMOS)
- 4x4 or 4x8: Lower cost (less chips), but more loss, more complex PCB, single-point failures, all CMOS
- Both will be used: One in base-stations/UE, and the other in mobile

How to Build MIMO Arrays?

- MIMO arrays can be built using quad or higher chip-integration levels
- Same discussion as before (loss, technology mix/match, cost, heat distribution, resiliency)

Industry has listened and we have 5G chips and systems

LG/RFIC '17

UCSD has demonstrated 5G systems

300 meter link demonstrated at 1-1.6 Gbps

AWG and DSO scope makes testing easy

300 m Link									
* * *		* * * *							
* * *		* * *							
0° scan 400 Mbps / 5.9%	+20° E-plane 1 Gbps / 10.3%	+50° H-plane 1 Gbps / 12.1%							
0° scan 1.6 Gbps / 10.9%	-20° E-plane 1 Gbps / 9.6%	-50° H-plane 1 Gbps / 11.7%							

No FEC, DPD or equalization

K. Kibaroglu et al. RFIC June 2017 IMS June 2017

Record performance in 8x8 5G systems (UCSD)

60 GHz Phased-arrays for 5G (29 dB Gain/UCSD)

- VR applications
- All SiGe or CMOS
- 32 and 64-elements

al.

EVM/Scanning with 1 Gbps QPSK/300 meters									
+30°		-30°		+45°		-45°			
17.4%		17.23%		21.2%		22%			

B. Rupakula et al. IMS June 2017

Facebook

In the near future...

- Defense remains the same
- Commercials increase a lot
- Defense does what it does best:
 - High power
 - High linearity
 - Ultra-wideband
- Commercials do everything else
- This happened before:
 - Radios (Apple, Samsung, Qualcomm, Intel)
 - Photonics
 - Satellites
 - Aviation
 - Nuclear science
 - etc.

We are far from done....

- We still have to learn on how to use phased-arrays with complex modulation (they were used in radars or QPSK communications only)
- We need to greatly lower the cost of these systems: silicon RFICs (great enabler), but also at the PCB level and with self-calibration.

Research in:

- Phased-Arrays: No calibration whatsoever (chip level, antenna level). Lower cost.
- Better silicon: Lower current (higher ft, fmax), lower NF.
 - → Silicon needs to come close to GaAs (Pout, NF)
- Power Amplifiers: High-order modulation, DPD, back-off, efficiency.
- Millimeter-Wave Antennas: Wideband, efficient, stable active impedance.
- Linearity: Base-station interference, mitigation.
- Production Tests: Meet FCC requirements at minimal cost.
- SAR: How to handle SAR with 43 dBm and 65 dBm EIRP?

Built-in-self-test for lowering the cost

- Integrated self-correcting VNA covers 2-16 GHz
- Integrated RO to generate BIST signal
- Wideband couplers at input and output ports
- Integrated power meters for absolute power gain meas.

T. Kanar et al. T-MTT, Dec. 2016

BIST area

Detector (Phase State 25)

Frequency (GHz)

11

13

15

We should thank...

• DARPA: Funded all the initial work to make 5G possible

• Universities: Did the early mm-wave designs, trained students and industry

Foundries: Listened to mm-wave designers and made their process better

• Test Systems: Easier to use at mm-waves, can do complex modulation tests quickly

Software: Cadence, HFSS, Sonnet, etc. are much better and easier to use

• RFIC and microwave designers: The heroes of 5G. Nothing is impossible to them.

THE END OF THE MARCONI ERA IS NEAR (1920-2020). WE ARE NOW ENTERING INTO THE DIRECTIVE COMMUNICATIONS ERA, and soon, we will look back at the Marconi era as we look back at the old analog TVs today ©