Skip to main content
Multiplexed Qubit Control with Ultra-Low-Power, Base-Temperature Cryo-CMOS Multiplexer
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of large numbers of qubits at millikelvin temperatures, resulting in a massive input-output bottleneck. Cryo-electronics, based on CMOS technology, may offer a scalable and versatile solution to overcome this bottleneck. However, detrimental effects due to cross-coupling between the electronic and thermal noise generated during cryo-electronics operation and the qubits need to be avoided. In this talk we present an ultra-low-power RF multiplexing cryo-electronic solution operating below 15 mK that allows for control and interfacing of superconducting qubits with minimal cross-coupling. We benchmark its performance by interfacing it with a superconducting qubit and observe that the qubit’s relaxation times (T1) are unaffected, while the coherence times (T2) are only minimally affected in both static and dynamic operation. Using the multiplexer, single qubit gate fidelities above 99.9%, ie well above the threshold for surface-code based quantum error-correction, can be achieved with appropriate thermal filtering. In addition, we demonstrate the capability of time-division-multiplexed qubit control by dynamically windowing calibrated qubit control pulses. Our results show that cryo-CMOS multiplexers could be used to significantly reduce the wiring resources for large-scale qubit device characterization, large-scale quantum processor control and quantum error correction protocols.